Functional equation in polynomial functions.

https://www.linkedin.com/feed/update/urn:li:activity:6748898017883041792
Determine all polynomials $P(x)$ with real coefficients such that

$$
(x+1) P(x-1)-(x-1) P(x) \text { is a constant polynomial. }
$$

Solution by Arkady Alt, San Jose, California, USA.
Since $(x+1) P(x-1)-(x-1) P(x)=c$ for any $x \in \mathbb{R}$ and constant $2 c$ can be represented in the form $c=\frac{c}{2}(x+1)-\frac{c}{2}(x-1)$ then denoting $b:=\frac{c}{2}$ and $Q(x):=P(x)-b$ we obtain $(x+1) P(x-1)-(x-1) P(x)=c \Leftrightarrow$ $(x+1)\left(P(x-1)-\frac{c}{2}\right)=(x-1)\left(P(x)-\frac{c}{2}\right) \Leftrightarrow(x+1) Q(x-1)=(x-1) Q(x)$
Since $(x-1) Q(x)$ is divisible by $x+1$ and $\operatorname{gcd}(x+1, x-1)=1$ then $Q(x)$ is divisible by $x+1$, that is $Q(x)=R(x)(x+1)$, where $R(x)$ is quotient polynomial and, therefore, $(x+1) Q(x-1)=(x-1) Q(x) \Leftrightarrow(x+1) x R(x-1)=(x-1)(x+1) R(x) \Leftrightarrow$ $x R(x-1)=(x-1) R(x)$. And again by the same reason as above $S(x):=\frac{R(x)}{x}$ is a polynomial such that $S(x)=S(x-1)$ and $S(x)$ as periodic polynomial with period 1 is a constant polynomial, that is $\frac{R(x)}{x}=a$ for some constant a.
Therefore, $Q(x)=a x(x+1)$ and $P(x)=a x(x+1)+b$.
Checking: $(x+1) P(x-1)-(x-1) P(x)=a(x-1) x(x+1)+b(x+1)-$ $a(x-1) x(x+1)-b(x-1)=2 b=c$.
Thus, general solution of given functional equation in polynomial functions is $P(x)=a x^{2}+a x+b$, where $a, b \in \mathbb{R}$.

